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MONTE CARLO SIMULATION FOR APOLLO
GO, NO-GO VERIFICATION

by

Bernard Kaufman

ABSTRACT

The purpose of this Monte Carlo study is to determine the
accuracies to which the scalar orbital parameters speed, height
and flight path angle can be determined from 60 seconds of ship
tracking data. The Apollo Go, No-Go decisionis basedupon these
scalar parameters. Comparisons are included with results ob-
tained by other investigators using different methods. This study
shows that speed is very sensitive to the weighting employed, and
that speedand flight pathangle are sensitive to tracking geometry,

iii

X-507-67-61



F—

CONTENTS

ABSTRACT .. it e e e e e e e e e e e e e e iii
I. INTRODUCTION .. L [ 1
I ANALYSIS & o o o oottt e e e e e e 1
III. TRANSFORMATION TO SPHERICAL e 6
IV. CALCULATION OF PERIGEE UNCERTAINTIES . . .ot vve v ine 8
V. EXAMPLES AND RESULTS .\ttt vt i ettt e e e et e e 9
VI. ACKNOWLEDGEMENTS « o o o vttt ettt e et e e e e i i e 11
VIL REFERENCES . ..ot tieeee e, e 11




X-507-67-61

MONTE CARLC SIMULATION FOR APOLLO
GO, NO-GO VERIFICATION

by ,.

Bernard Kaufman

I. INTRODUCTION

When the Apollo spacecraft is inserted into a parking orbit about the earth, it becomes im-
poriant to determine the accuracy one might expect in computing the orbit using only a short
tracking interval from a single shipboard C-band radar, The tracking results obtained by the
ship are used for verification of spacecraft on board data received by telemetry for a go, no-go
decision. Therefore the use of shipboard radar is that of a backup or verification system since
the major decision will be based primarily on the on board position and velocity measurements
(Reference 1). During the powered flight phase, coverage from ground stations is adeguate but
land based tracking coverage terminates at or prior to cutoff of the S-1V-B stage at about 1440
nm down-range. The insertion ship thus becomes the primary observational base for the insertion
phase.

The "orbit determinations' .are simulated in this report by utilizing least square {its to
sampled data generated by Monte Carlo techniques. A measurement error model is first assumed
and is then perturbed by a random process, The deviations are then used in a weighted least
squares method to determine the "'best fit" orbital elements.

Results that were obtained previously (reference 1) and results not yet published (Table 3)
were at variance with one another and thus indicated that further work was necessary. This re-
port was then undertaken as an attempt to resolve these difficulties.

II. ANALYSIS

A comment on notation should be made here. Bold face capitals denote matrices while small
letters denote the elements of the matrix.

We assume a radar which measures range (r), azimuth (a) and elevation (¢) with correspond-
ing errors 8r,8a and 8¢, We may express these errors in-terms of the Cartesian position vector

»®

x(su):

N

by the first order terms of the Taylor series

3

2 : or
r+dr=r ¢ ax.Sx'_+vl

" 1

i=1




where v, is a residual error term resulting from neglecting higher order terms in the Taylor's
expansion.

Then

Similarly
where the summation is assumed

It must be pointed out here that 3% is a time dependent matrix and therefore is not referenced
to a fixed point in time. But for a least squares fit such a reference point is needed. Now

X X

s 23X
§X = =2 8 ga
X 3T r+aa 8a+36 Se

where

$X is a 3 x 1 matrix.

Sx
8X (3015 = | 8¥
5z
since %,y ,z are not functions of r, o, and e,
Then we may write
Sr
° 3y, z)]
8 X :[»————' Sa - (1)
(3x1) P
a(r'a‘“) (3x3) Se
(3x1)

where we consider sX as being expressed in an inertial coordinate system whose origin is at the
center of the earth.

This equation is an inconvenient one to solve in its present form since it is time dependent

and we therefore seek a variational equation in a different form which will allow us to evaluate the
variation in position at any given time as a function of the measurables r,a ande.



If we define a2 new coordinate system (z) centered at the observer where
z, is directed towards the East

z, is directed towards the North

z; is normal {o the local tangent plane

then the coordinates of a point in space measured by the radar are given by:

z; r sinacos €
Z(3x1): z, |=| rcosacose
z, rsine o
For the first order terms, we have
3z, cos € sina -cos a -sin € sina Sr
57,(3”): 322 = | cos € cos a sin a -sin € cos a ~T CcOs € da @)
523 sin € . 0 cos € (3x3) rée (1)
or in abbreviated form
- ~ .
I 33y 8% (5e1y # Dgesy 8K oy, (3)
where J is the orthogonal 3 X 3 matrix;
1 0 0
D(st) =l 0 -rcose O ;
0 0 r_lsa)
and
Sr
8K(3x1) =1 8a
Se (1)

represents noise in the measurements (Reference _2).
If we let¢ and A be the geodetic latitude and longitude respectively of the station then we may
transform equation (3) tu inertial ccordinates by means of:

z “<3x3) “z (3x3) (96) x(3’<1)‘- R(axa) S(sxx‘)

(31) 7



where

L i \ 7 .
Roasy = Rx(3x3)_<'§—~¢> R, aesy <§+ A) '

S@ax1y is the position vector of the station in an earth centered coordinate system where s, is

towards Greenwich, s, is 90° east ofs, and s, is along the earth's axis of rotation; R, and R, are

‘rotations about the corresponding x andz axis and §, is the GHA at the time of observation. Us-

ing this notation equation (3) becomes

; C_qT 538X T
D bK(axl) “-]<3x3) R(3x3) Rz(3>’3) ("G) b\(s» 1y © J(3x3) R(3x3) SS(3x1)

(3x3)

where §X isinertial. If we include in the above equation the variation of the measurement (Refer-

ence 3) with respect to bias in the measurement (¢8,,,,) we may write the equation as

-~

L &X

(33 ° X1y =D

. T . :
323y S Baany +J(aeay Bacsy 88 D 8B sry @)

(31) T H(33)

where

_ T
L(3*3) "J(3x3) R(3"3)Rz(3x3) )

Equation (4) permits the computation of 58X for each point in time which is then substituted

N '\ (3x1)
into equation (1),
Consider now the position vector X 1y at time T = t. )‘((3!1) is related to the state vector
X by a functional relationship
Oex1y
x(3"1) - k(3"1) (Xo(sn) ’xo(:&xl)
and for the erros 8 ‘2(3”) we have
- v - v s X , > 5 ".
Xy #2 Xy * Xy (xo(axx) ¥ xo(axn xO(sxx) ¥ \0(3”)

- where we shall consider X; = to be the state at some fixed "reference point'" in fime. Expand-

ing the above as a Taylor series we have

X

- “ . 9X . X :

' =X ( , X —_ 3 : §X

+5x(3,1) ,\(3‘1)(4\0,.\0)+ 3% \0(3”)+ 5 Osnt)
33 Yo ey

r
(3x1) Ve



or

o _ I(x, y, z) . . *
5)‘(3”) = 3 XO(GH) +V(3x1)

O (Xy, Y. Zg. Xy Yo, 20)
o Yo fo-¥o: Yo %o f o ()

where we do not include the partials of %, y, z since there is no direct measurement of them and
thus X ., is the matrix of position only and éX, is the variation in the entire state at the
reference point. cexa

Letting & denote the matrix of partial derivatives we have

Y(370)

\ % =5X 5

(3x1) 8X

-0
(3<1) O axs) Ocox1)y

or

_ ) _ o - ) - (5
v(3x1) L(sxs)g)‘(snl) L(3x3) 00(3,5,)bxo(6”) . ()

where L . ., is defined as above and V3, = L, . Visaay * + We now use the method of weighted
least squares with equation (5) where we seek tfxe bes(t correction to the state represented by the
matrix §X and where L 5X is given by equation (4). The method of least squares

Ocax1 (3x3) 31 = R -
for the solution of the unknown parame%ers 5X, stipulates that: ® = V{5 W 3.5y V4, Pe2
minimum (6x1)
o2 0 0
where V=10 12 cos? € o2 0 (6)
0 0 r2o?

€—(3x3)

is the weighting matrix,

*This matrix of partial derivatives is called the state transition matrix when the complete matrix is written as

[ 3Gy 2 %3 ) J
[.a("o* Yo Zo. % Yo Zp)

(6x6)
The computation of this matrix is found in reference 4.
**It should be noted that equation (4) may now be written as:
R B T ; -
Laay 0, ¢ o 7Daay 8oy + (305 Ria )88y = Disesy 3By
x6) (6~1 .
where the fixed reference point (2X; ) is necessary. for the least squares procedures.

(6x1)



Substituting from (4)
d= (LK -Lé, 5XJTW 1 [LX - L 5X,)
= [SXTIT - eXT®TLTI W= (L5X - Ly £X,]

=S XTITW-TLsX - s XTSI P W ILSX - sNTUTW-1 L&, 86X+ sXT AT LT W1 L&, 2 X,

then

ad N o NETN . A
B(BXO)ZOZ—G)};IF\" 1L5\+®ELT\7 ‘I,oobxo

or

STITW-TLSX = TLTW 'L& 85X,

If we write the above in summation notation where we sum over n observations we have

n n .
? @ LT RTTLEX) oy, = Z(mg LTV Lo oy | * X0y,
1 1

or

Z(OTL’I‘“-I [(D) Z(Q’TLTV'lLsz\) (7)

(6x6) 1 (6x1)

6x1)

which are the normalized equations.

Equation 7 represents the weighted least squares procedure for determining the "best fit"
variations at a fixed reference point. The nonweighted procedure is identical and if one sets
¥ = I, the identity matrix, equation (7) reduces to the nonweighted case:

~1 n
s, = Z@g 8o) NGRS )
(6%6) 1 (6x1)

III. TRANSFORMATION TO SPHERICAL ELEMENTS

Once X, 1is obtained either by equation (7) or equatlon (8) it may be more instructive to
look at the res ul%mc uncertainties in terms of deviations in the insertion elements of the space-
craft. Accordingly, we define these elements as:

h. spacecraft altitude above the earth
v, speed

flight path angle

a. insertion azimuth

A, right ascension (or longitude)

8. declination (or latitude)




The transformation from injection elements to position and velocity coordinates are as
follows (References 2 and b);

x | - T cos &, cos A
y = | r cos Sisin A
(3x1) rsin g, (1) v
- (9)
X v, (siny, cos &, cos A, -cos 7, sina; sin ), - cos ¥; cosa, sind, cos D
y v; (siny; cos §; sin A, +cosy, sinc; cos A; - cos Y; cosa; sind; sin),)
z (3 1) v, (siny; sin§; + cosy, cosq, cos ) (1)
It can easily be seen that we may then write the transformation for the deviations as
[ 8h,
Sv,
. 8
5X :[ O(x y, 7, X ¥, 2 ] &
X, -
(5"_‘) My vy 7h g Ay 8)) 66y | 09
S A,
§1{8.)
L i (ex1)
or
8)‘°<5x1) =Yooy Proxn) : (10)
where Y66y 1S the matrix of partials and B o1y is the variational matrix. Then we have
- w-l -
By = Yioxs 8"‘0(6,(6)
and from equation (7)
n - n
—w-1 STITWw-171 & STIT wW-10 5%
Bty = Yices) E @ ITW 1 L&) > (@ LT W1 LX) (11)
1 (6%6) 1 (6<1)

Recall from equation 4 that

-

L &X

(3%3) =D SK R

T -
1) " Peaay 2By + Tiasy Resasy 85y =D

(33) *Branny

If we apply random numbers to the error terms SK(SH), 88 5.1y and 5B 31y We then have a means
of calculating the statistics in a Monte Carlo sense. This is done in.the following way: random
numbers are generated and used as multipliers for the 5§ «y and 3B .7 . erfors. These™
products then give modified 58 a1y and &p . .o which are constants over the n observations. How-
ever for each of the n observations different random numbers are generated for the ¢ X or

- o . (3 1)
noise errors. Then equations (5) and (7) allow us to compute the variations. This procedure




is repeated forj times or Monte Carlo samples yielding j matrices for $X, and p. The standard
deviations may then be computed. For example

i 1/2
Oh; = _'-(S‘h‘“"—“i )2 - (85—;)2

) -1

where §h, is the mean of the errors in altitude determined from j Monte Carlo runs. Similarly
for the other injection parameters and for the uncertainties in the state §X,.

1V. CALCULATION OF PERIGEE UNCERTAINTIES

Deviations in perigee may be included in the Monte Carlo statistics by means of classical
methods of celestial mechanics. Denote the original "unperturbed' reference state byX,. Then
the "best fit" state is

X
y
z r= (x2 4 y? 4 22)172
x(sx_l)‘xo(ﬁu) +8X0(6”) - and vz (R2 4§24 52)172
y
z
Then perigee is calculated as follows
a-= r 2 (12)
9 Iv7
©
where ¢ is the gravitational constant of the earth
esinE = r-y
Vita
(13)
ecosE=1-1/a
which yield the ecceniricity e and finally
rp»:a(l—e) C (14)

If perigee is also computed with the original vector X then the variation of perigee is thus
obtained and the standard deviation may be calculated in the usual manner. It must be pointed out
that for near circular orbits, perigee uncertainties are not gaussian. Thus the standard deviation

8



in this case is not really what it implies. However, once one realizes this, the standard deviation
and the mean for the perigee ervors still allow one to intuitively gain insight into what is happen-
ing. ' '

-V, EXAMPLES AND RESULTS

Two different sets of data were selected for numerical examples in a preliminary study of the
effects of geometry on the uncertainties. Range safety requirements at Cape Kennedy enforce
certain restrictions on launching and to meel these requirements two bands of 26° launch azimuth
widths were selected. The azimuth spread of 26° represents the maximum daily launch window
for the Apollo mission.

Two ship locations are necessary to provide coverage of the two azimuth bands. Ship A with
geodetic coordinates 26° .0 (latitude North) and 47° .5 (longitude West) is vsed to cover the azi-
muth band from 72° to 98°. Ship B with coordinates 21° .25 N and 48° .75 W is used to cover the
azimuth band from 82° to 103°,

Figure 1 shows the locations of the ships and the two bands of azimuth, The coverage of the
radar indicated by the circles are for elevation angles above 5°.

Table 1 shows the uncertainties for the weighted least squares for height, speed, flight path
angle and perigee. The last three colunins are the average perigee uncertainties and the uncer-
tainties in total position and velocity. The first 3 columns are launch azimuth, elevation angle of
the first observalion and elevation angle of the last observation, As can easily be seen, the un-
certainties for Ship A and Ship B are almost identical. The time span for the observations is ex-
actly one minute along the orbit with the first observation occurring at insertion into the orbit and
one observation per second thereafter, :

Table 2 is the same as Table 1 except that here the weighting matrix is the identity matrix.
This has the effect of giving a heavier weight to the angular measurements than is given the more
accurale range measurement and one would suspect that the resulting uncertainties would be larger,
A comparison of Tables 1 and 2 shows that the uncertainties in h;, v; and total position are the
same; however, for speed, the difference is considerable. The deviations associated with perigee
and total velocity are also larger in the unweighted case. This clearly shows the penalty one pays
for using nonweighted least squares. : :

Table 3 is the results obtained by W. D. Kahn in a study (yet to be published—Ref. 8) using a
linear error analysis program. A comparison with Table 1 for ship B shows that speed, flight
path angle and the total velocity are in fairly good agreement. However altitude and total position

-~ do differ by a significant amount.

P. G. Brumberg in reference 1 shows results that he obtained using Monte Carlo techniques.
A complete description of the error model used can be found in the reference. A comparison be-
tween the results obtained by Kahn, Brumberg and'the author is shown in Table 4 for the 108 de-
gree launch azimuth only. The results obtained for Brumberg were read from graphs in reference
1. These results were cobtained without weighting the measurements.

The above mentioned results show that while the author and Mr. Kahn's results agree except
in altitude and position further investigation is still required into this difference.

As pointed out earlier, the uncertainties in perigee for a near circular orbit are not dis-
{ributed in a gaussian manner. However in the above mentioned examples, the uncertainties in the
state vector were normally distributed with a zerc mean within the expected accuracy of a finite
sample size. ‘



Several other studies have been made in connection with the perigee uncertainties. Reference
6 utilizes an analytical expression of the go, no-go criterion based on lifetime and results are
given in that report. A preliminary analysis, currently being prepared for publication (Reference
7), has also been undertaken for the probability distribution of perigec uncertainties and its ap-
plication to the go, no-go decision. This analysis utilizes two-body equations of motion.

Figures 2 through 7 show the uncertainties in h;, v;, 7;, r,, total position and total velocity
for Ships A and B plotted versus launch azimuth. Both weighted and unweighted cases were shown.
The effect of geometry is clearly seen in these graphs.

The error model used as input in the above examples was as follows:

Noise (3X) Bias (3p)

" Range (meters) 10.0 20.0
Azimuth (milliradians) 0.4 0.8
Elevation (milliradians) 0.4 0.8

STATION ERRORS (meters)

X 430
Y 430
Z 0

WEIGHTING MODEIL FOR WEIGHTED CASES
"o range = 10.0 meters
o azimuth = 0.4 milliradians

o elevation = 0.4 milliradians

10
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. Ship A
2 7.5 9.1 .63 612 0zz | 2.3 -2.5 1.28 6.04
75 8.4 12.8 g0 513 026 | 2.4 -2.6 1.23 6.38
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165 8.5 13.7 .91 .495 027 1 2.5 -2.6 1.19 6.35
108 1.5 | 9.8 .98 580 023 | 2.4 -2.5 1.25 6.04
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of 7.57 to one minute later)
7.5 (Long. Wert)

CVes f)

r (n‘.:eters)
a (milliradians)

€ (milliradians)

Bins (:5)

20.0
0.8
0.8

Noise {+K)
10.0
0.4
0.4

- A}
Station errors {(maters)

x 4300
y 430.0
z 0.0
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Altitude 185.2

Eccentricity (031 10 .00

Tracking frein in

venition plis cne ninute (or from

o minimum clevation angle of 7.5 1o one minvie laler)
Ship A 2670 (Good. Lat. Horth); 4775 (Long. West)
Ship B

21725 (Crod. Let. Mie

Shin /A
2.603 L0e7

[N

w

82
85

90

97
100
105
108

3.1 30.7 i 1.39 038} 5.2

05 9.8 15.9 85 2.19 626 | 3.6

98 7.7 11.1 85 2.60 026 | 4.2
Ship B

SR) 427 T8 (L ang, Voet)

Telal

Total

Lverage
fry Position | Velocity
(s3m1) (un) (m/scc)
-44 1.29 6.68
-4.1 1.24 7.02
-3.8 1.08 7.54
-4.4 1.01 8.34
-4.1 1.03 .58
-4.2 1.14 6.64
-4.1 1.24 6.79

r (meters)
a (milliradians)
€ (milliradions)

Bias (&p)
20.0
0.8
0.8

024
029
.038
046
.044
037
.028
.023

Noise (3K)

1
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Table 3

Lineur Briros

UH!: Sf[v'»;'w e

Altiiuds

Eeconiicii
Trog!

3 ene minvte {or from
a mininun elovation gl 1o e minute leter)
Ship A 2670 (G 5 (Long. ¥est)
Ship B 217.25 (G- 1. North); 459.75 (Long. West)

/

T.avalh Total Toind
C SN ¥ m /L;:" . . oo ey b o . AV PN
Avimuli i (e) o, (m/5eg) Sy (clog) Position . v (,1("','11’;’
(k) (/=3
Shin T
U L U e
82 63 GO 024 1.11 6.680
85 .60 I 025 .95 6.91

80 .30 .41 030 16 7.33
95 .18 A1 .040 .68 8.25
100 .30 A2 030 .76 7.33
108 .63 .67 .024 1.11 6.87

Bios (2f) MNeise (CK)  Steiion erers (mziers)
r (meters) 20.0 15.0 x 430.0
a (milliradions) 0.8 0.4 y 430.0
€ (milliradians) 0.8 0.4 z 0.0

Table 4
1087 Launch Azimuth
Onc sigria uncertainties for Apollo Go, No-Go verification
Altitude 185.2 K
Eccentricity 001 to .002

Tracking from inseriion to insertion plus orie minute {or from

v alavation gmalae of 7 60 so o miolac Fesol)
win cicvotion cngle of /.57 to one minute later)

Ship A 267 .0 (Geod. Lat. North); 47°.5 (Long. West)
Ship B 217.25 (Grod. Lat. Narth); 48°.75 (Long. West)

S min

Total Tolal
- (m/scc) o (deg) e, (km) Position Velocity
(lxm) (m/sec)
Kahn .67 024 .63 1.11 6.87
Brumberg 2.1 .03 63 1.5 6.3
.59 .023 .96 1.25  6.04

Foorfmon
(weighted)

Kaulnian 2.78 025 .96 1.25 6.65
(unweighted)
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